BEEBEX

GENERAL PURPOSE EXTENSION UNIT

* Aftaches to 1MHz bus
* Allows any CUBE or Acorn Eurocard to be used as an extensicn to the BBC
* Extends the BBC memory map by up to ONE MEGABYTE

BEEBEX is probably the most versatile and comprehensive way of extending the BBC
microcomputer, because of the whole of the Control Universal range of Eurocards becomes
available as hardware extensions. These are described in section 2 of this catalogue.

The CUBE range includes:

12 bit and 8 fast analog converters, DAC and ADC

Digital i/0

Serial i/o

Heavy-duty industrial opto-isolated i/o

Dynamic RAM memory and battery backed CMOS memaory
VDU interface that provides full colour at high resolution of 512 x 256 pixels
In-circuit emulator

ROM emulator

Real-time clock

Liquid crystal display

Miniature printer

In addition, EuroBEEB is a single board computer which can support BBC BASIC, and can take
over the function of the BBC after program development is complete.

Yl

DI UNIversa | (Distributed by

The Hardware House

Manufacturers and Distributors of
Microcomputer Systems and Components

Unit 2 Andersons Court, Newnham Road,
Cambridge CB3 9EZ.

Tel. Cambridge (0223) 358757 ﬁ
Telex Service 995801 GLOTX-G Quote C-13

Control Universal Ltd
BEEBEX USER MANUAL

Hardware Expansion Unit for the BBC Microcomputer

HARDWARE EXTENSION TO THE BBC MICROCOMPUTER.
BEEBEX provides a convenient, robust and versatile means of adding further hardware
facilities to the BBC micro.

ENTIRE CUBE RANGE CAN BE USED. ;
All CUBE Eurocard computer modules to be used to extend the hardware capabilities of the
BBC Microcomputer.

EXCEPTIONALLY EASY TO USE from the software point of view by use of a m.qmimﬁ ROM
chip called *10. See also separate data sheet on this product.

ONE MEGABYTE OF ADDRESS SPACE.

Achieved by using latches to direct data from the BBC to anywhere in the 1MB map. Use of
CU-DRAM 64KB DRAM memory cards can thus extend the effective RAM storage area of the
BBC Micro to up to 1 megabyte. :

AUTOBOOTING. The BBC has an optional facility whereby a ROM (or EPROM) with address
zero the Beebex memory rhap will be executed immediately upon switch-on. Such a ROM (or
EPROM) can contain BASIC, machine code, or any other language for which there is an
interpreter available in the machine.

EXAMPLES OF USEFUL EXTENSIONS include extra memory (including battery-backed
CMOS), digital, analog and serial input/output channels and real-time calendar clock. CU-
GRAPH, the true high resolution colour graphics display interface can be used, but does not
come with software to be driven directly from the BBC operating system. This facility can be
provided by the CUBE graphics terminal.

Industrial applications can use BEEBEX to develop control ,mvv__n\:_o:a with the BGC
machine, and then use EuroBEEB to replace the BBC in the target system.

BEEBEX USER MANUAL

Setting up Beebex
Accessing Beebex

Writing to Beebex

Reading from Beebex
Megabyte addressing
Megabyte writing
Megabyte reading
Accessing Beebex with *IO

Control Universal Ltd

Megabyte read, OSBYTE method, machine code
Read in to accumulator the value in specified Beebex memory location.

Method Example

Read from hex address XYNM Read from hex address 8C54

LDA #147 LDA #147 define OSBYTE function as write to Fred
LDX #&FF LDX #&FF specify last byte in Fred

LDY #&XY LDY #&6C specify midbyte address in Beebex

JSR &FFF4 JSR &FFF4 execute Fred write function

LDA #148 LDA #148 define OSBYTE function as read from Jim
LDX #&NM LDX #&54 specify lowbyte address in Jim

JSR &FFF4 JSR &FFF4 execute read from Jim

The data read from Beebex is now in the Y register of the CPU.

ACCESSING BEEBEX WITH *10 b

‘10 is a separate product with its own data sheet, and many more functions than just accessing
Beebex. The following description covers only the Beebex-related topics of *10.

*10 is a sideways ROM of the type now becoming increasingly popular for providing additional
features on the BBC microcomputer. Other sideways ROMs include m>m_0 Disk Filing System
(DFS), Wordwise and Ultracalc.

*10 is a utility ROM, like the disk filing system ROM, and as such expects to be called from other
sideways language ROMs. However, once called, vectors have been set _.__.._ which direct all input
and output calls to which ever i/o device has been specified to *10.

The fundamental concept of 10 is that any area of memory outside the BBC computer is treated in
the same way as a file on the file management system, ie like a disk file. Thus a named file can be
opened, with a pointer within that file indicates where the current position is within that file, and
with the ability to use the commands BPUT and BGET to write and read bytes from the Beebex
memory map.
Example of the use of *10.
In this example the BBC is connected via Beebex to the 0Cm>z,m universal digital and analog
interface. By writing an incrementing value to the 6522 (VIA) digital interface chip the on-board
lead unit can be made to flash a binary representation of the numbers from 0 to 255. A time delay
allows time to see the progressive changes.
10 *10 call *10
20 pb=OPENUP"BUS &0E00” = BUS is a keyword recognised by *10, and when used sets a
! vector to the address next mentioned pb is the “handle” by
which port B, which exists at hex 0E00 on the CUBAN-8, can
be accessed.
30 ddr=OPENUP"BUS &0E02"” the data direction register (ddr) exists at hex 0E02

40 BPUT#ddr,&FF write a byte to handle dddr, of value hex FF
50 FOR A=0 TO 255 : commence loop of 256 cycles

60 BPUT#pb,A ' write a byte to handle pb, of value A

70 PROCdelay call procedure named .do_m<..

80 NEXT A end of loop

90 GOTO 50 run program again
100 DEF PROCdelay define procedure named “delay”

110 FOR D=1 To 500:NEXT D meaningless loop to cause delay
120 ENDPROC

MEGABYTE READING Direct method, megabyte read, BASIC

To read the value In megabyte address hex QXYNM in Beebex, and make it available as BASIC
variable varl. y
jim = &FDOO
lowlatch = &FCFF
7lowlatch = &XY
hilatch = &FCFE

define communications gap in memory

define position of lowlatch in Fred

define value of midbyte to be written in lowlatch
define position of high latch in Fred

7hilatch = &0Q define value of hinibble to be put in high latch
varl = jim?&NM put in variable varl the value of the byte at &QXYNM in Beebex

example: print the value in Beebex megabyte memory location 76C54.
jim = &FDOO

lowlatch = &FCFF

?lowlatch = &6C

hilatch = &FCFE

7hilatch = &0Q

varl = jim?&54

PRINT varl

Direct method, megabyte read, machine code

method example

LDA H&XY LDA #&6C value of midbyte

STA &FCFF STA &FCFF write to paging register in Fred
LDA #&0Q LDA #&07 value of hinibble

STA &FCFE STA &FCFE write to hinibble register in Fred
LDA &FDNM LDA &FDS54 read from lowbyte in Jim

Value of specified byte is now in the accumulator of the cpu.
Megabyte read, OSBYTE method, BASIC
OSBYTE = &FFF4 define OSBYTE

A% = 147 write to Fred, to set lowlatch to desired value
X% = &FF define last byte in Fred, ie paging register
Y% = &XY set value of midbyte to put in Beebex lowlatch

CALL OSBYTE execute, to set midbyte to hex XY

A% still defined as write to Fred
X% = &FE define last but one byte in Fred for hinibble latch
Y% = &0Q define value of hinibble
CALL OSBYTE execute function to set hinibble to hex 0Q
A% = 148 define OSBYTE function, ie read from Jim
X% = &NM define lowbyte in Jim, corresponding to lowbyte in Beebex
varl = USR(OSBYTE) execute read function
value of byte read will now be found in varl. eg. PRINT varl will display the value found.
(alternatively, PRINT USR(OSEYTE) will print the value directly).
example: read to BASIC variable varl the value of Beebex 1MB address hex 76C54.

OSBYTE = &FFF4

A% = 147

X% = &FF

Y% = &6C
CALL OSBYTE
X% = &FE

Y% = &07
CALL OSBYTE
A% = 149

X% = &54

varl = USR(OSBYTE)
PRINT varl

SETTING UP THE BEEBEX

There are two versions of Beebex:-

- CUE2701 Beebex for rack mounting
- CUE2704 Beebex with 4 integral sockets for stand alone use

In addition there are a range of hardware and software options available, which are listed on page
18.

The two versions of Beebex are identical in use, the only difference being that the stand-alone
version has four integral euro-sockets, while the rack version must plug into a Eurorack, which
can have up to 16 sockets.

The 34 way cable m:uuzmnisjmmm_umxﬂmn_cnomaSﬁo.:m;‘INccmo_i:oc:qmqw_amo::n mmO
micro. :

As supplied, the address map on the Beebex is the standard 64KB of the typical 8 bit micro. To
extend to 1MByte an extra latch chip must be fitted (see later). The whole of this64KB is available
to the user, so the CUBE modules to be used as BBC extensions can be set to any address
demanded by the application. Note thata 64KB CU-DRAM memory card can be used inits entirity
on its own, but if another device is to be used, the CU-DRAM must have one or more of its 4KB
blocks deselected to make room for the extra device.

Future designs of CUBE modules will have 1 Megabyte addressing included as standard, which
will allow 1 Megabyte of DRAM to be accessed simply by calling a megabyte address as shown
later. Current designs are "paged"”. To call a particular CU-DRAM, a byte having a value in the
range 0 to F (ie 0 to 16) is written to CU-DRAM hex address FFFF. The card having the code
specified will be enabled and all other disabled. Note that any blocks disabled on the CU-DRAM
map to accommaodate other devices on the BEEBEX map must be disabled on all of the CU-
DRAMSs in use.

ACCESSING BEEBEX
Control Universal specify three methods of accessing Beebex.

“10 The easiest methaod is to use the sideways ROMcalled *10. A separate publication describes
this in detail, but for brief details see a section at the end of this manual.

Direct. The directmethod of access is explained in the following pages, and has the advantage of
being the fastest means of access.

OSBYTE. The BBC micro has, as one of its many strengths, a properly defined means of
accessing expansion units. There are two gaps in the BBC memory map specifically for this
purpose.

The gap reserved for controlling expansion units is named “Fred”, and that for communicating
with them, “Jim". (for no obvious reason).

These gaps, and "Sheila”, for internal devices, are defined on page 436 of the BBC user manual, as
follows:

Name Memory address range OSBYTE call Write

. Read
FRED &FCO00-&FCFF 892(146) &93(147)
JIM &FD00-&FDO0 &94(148) 895(149)
SHIELA &FEQO-&FEEF &96(150) &97(151)

Within the Fred i/o gap of 256 bytes, from hex FCO0O to hex FCFF, allocations have already been
made for specific purposes, such as the |IEEE interface from hex FC20 to FC27. The gap reserved
for Beebex is the “paging register”, and is the last byte (hex FF) in Fred.

There are further bytes left free for the user to allocate, and one is employed by Beebex for the
extended (1MB) addressing, and is the last but one byte, at hex FE.

To fully define a byte within a 1 Megabyte range, 20 bits are required, which can be brokendown as
follows:

1st 8 bits (lowbyte)

define byte
within 256 bytes

address with JIM

2nd 8 bits (midbyte)

define byte of
256 bytes in 64KB map

Beebex low latch ~

3rd 4 bit (hinibble)

define map of 64KB
within extended map of 1MB

Beebex high latch

Thus the Jim memory gap of 256 bytes exists in the Beebex memory map, and on the BBC micro
map simultaneously. However, from the point of view of the BBC, these 256 bytes are at hex FD00
to hex FDFF, while on the Beebex they are at hex QXY00 to QXYFF. (note that a five digit hex
number is required to define a number within a 1IMB range).

The value Q is the hinibble number on the Beebex high latch, and the value XY is the midbyte
number on the low latch. The low byte number on the Beebex is exactly the same as.the low byte
number on the BBC.

To set the midbyte and hinibble numbers the required value is written to the latches by the BBC at
hex FCFF and FCFE respectively. However, to further ease this operation, the operating system
provides standard functions, called OSBYTE calls, with rules for setting the parameters to be
used.

WRITING TO BEEBEX - within 64KB map. 5

DIRECT METHOD, BASIC

write the value hex JK to address hex XYNM in the Beebex map

jim = &FDO0 define communications gap in memory

lowlatch = &FCFF define low latch, to which midbyte will be written

?lowlatch = &XY specify midbyte

jim?&NM = &JK write the value hex JK to lowbyte hex NM

Note that lowlatch need be defined only once for access to all the bytesin Jim, soaloop to transfer
256 bytes of data would set up lowlatch to start with, and then would loop round the instruction
accessing Jim, thus:
jim = &FDO0

lowlatch = &FCFF
?lowlatch = &XY

mem = &GHIJ

FOR A =0 to 255
jim?&(A) = ? (mem+A)

define communications gap in memory

define low latch, to which midbyte will be written
specify midbyte

specify start address of memory in BBC

set up 256 long loop

write the value read from memory

to lowbyte incremented from 0 to 256

NEXT

e.g. write the value decimal 127 (= hex 7F) to location hex 6C54 in the Beebex 64 KB map.
jim = &FDO0

lowlatch = &FCFF

?lowlatch = &6C

jim?&54 = &7F (or = 127)

DIRECT METHOD, MACHINE CODE

LDA #&XY LDA #8&6C

STA &FCFF STA &FCFF

LDA #&JK LDA #&7F (or LDA #127)
STA &FDNM STA &FD54

STANDARD OSBYTE (OPERATING SYSTEM)

CALL METHOD

The direct method does not obey operating systems rules, but is only very marginally slower than
a memory transfer within the BBC. The OSBYTE call method will be much slower, but is
recommended when use of a second processor is envisaged.

OS call method in BASIC

OSBYTE is a standard Machine Operating System call but is not a reserved BASIC word, so must
be defined before use in a BASIC program.

To write the value hex JK in the memory address hex XYNM in Beebex.

OSBYTE = &FFF4 OSBYTE exists at point in the OS ROM defined by &FFF4

A% = 147 defined required function, ie write to Fred,

to set low latch to desired value
X% = &FF specify last byte in Fred, ie hex FF, which paging reg.
Y% = &XY specify byte to be written as midbyte to Beebex low latch

CAL OSBYTE execute OSBYTE function as defined

?lowlatch = &6C LDA #&07
hilatch = &FCFE STA &FCFE
?hilatch = &07 LAD H&TF
jJim?854 = &7F (or = 127) STA &FD54

Megabyte write, OSBYTE method, BASIC
To write the value hex JK into the Beebex 1 MB map at address hex QXYNM.
OSBYTE = &FFF4 - OSBYTE exists at the point in the OS ROM defined by &FFF4

A% = 147 define required function, ie. write to Fred
to set low latch to desired value of hex XY
X% = &FF specify last byte of Fred, ie paging register
Y% = &XY specify byte to be written as midbyte to Beebex low latch

execute OSBYTE function as defined
note that A% is still defined as write to Fred

CALL OSBYTE

X% = &FE specify last but one byte of Fred, for hinibble latch
Y% = &0Q specify which of 16 blocks of 64KB within 1MB map
CALL OSBYTE execute OSBYTE function as defined

A% =149 define OSBYTE function as write to Jim

X% = &NM define byte address within Jim

Y% = &JK specify data value to be written

CALL OSBYTE execute function
Megabyte write, OS call method, machine code

LDA #1147 define function as write to Fred

LDX #&FF specify last byte of Fred

LDY #&XY . specify midbyte to be written to lowlatch
JSR #&FFF4 call OSBYTE

LDA #147 define function as write to Fred

LDX #&FE specify last but one byte in Fred

LDY #&0Q specify hinibble to be written to high latch on Beebex
JSR #&FFF4 call OSBYTE

LDA #149 specify function as write to Jim

LDX H&NM specify byte within Jim to be written to
LDY #&JK load data to be written

JSR #&FFF4 call OSBYTE and execute function

Example. Write the value decimal 127 (hex 7F) to location hex 76C54 in the Beebex 1MB memory
map.

BASIC machine code
OSBYTE = &FFF4 LDA #147
A% = 147 LDX #&FF
X% = &FF LDY #&6C
Y% = &6C JSR &FFF4
CALL OSBYTE :
X% = &FE LDA #147
Y% = &07 LDA #&FE
CALL OSBYTE LDY #&07
JSR &FFF4
A% = 149 LDA #149
X% = &54 LDX #&54
Y% = 127 LDY #&7F

CALL OSBYTE JSR &FFF4

value of byte read will now be found in varl. eg. PRINT varl will display the value found.
(alternatively, PRINT USER(O SBYTE) will print the value directly)

example: read into BASIC variable varl the value in Beebex hex 6C54.

OSBYTE = &FFF4

A% = 147

X% = &FF

Y% = &6C ¢
CALL OSBYTE

A% = 148

X% = &54 :

varl = USR(OSBYTE) §

PRINT varl

Read, OSBYTE method, machine code

Read in to accumulator the value in specified Beebex memory location.

Method Example

Read from hex address XYNM Read from hex address 6C54

LDA #147 LDA #147 define OSBYTE function as write to Fred
LDX #&FF LDX H&FF specify last byte in Fred

LDY #&XY LDY #&6C specify midbyte address in Beebex

JSR &FFF4 JSR &FFF4 execute Fred write function

LDA #148 LDA #148 define OSBYTE function as read from Jim
LDX #&NM LDX #&54 specify lowbyte address in Jim

JSR &FFF4 JSR &FFF4 execute read from Jim

The data read from Beebex is now in the Y register of the CPU.

MEGABYTE ADDRESSING

Before the one megabyte address capability can be used the extra address latch chip must be
fitted. This device is a 74LS173 and is fitted in the socket provided marked IC4. Take care to fitthe
right way round; the dot on the chip should be by the marked corner on the white ic marking on the
peb. The standard CUBE data bus (which is generally compatible with the Acorn Eurocard bus)
how has added the extra address lines A16 to A19 for megabyte addressing. With the addition of
the extra latch above, these appear on pins 15b to 12b respectively, on the CUBE 64 way DIN
connector.

MEGABYTE WRITING

Direct method, megabyte write, BASIC,

To write the value hex JK to the address in Beebex hex QXYNM. (note five figure address for 1 MB
map). The top four bits which define the block of 64 KB within the 1TMB map is called here the
“hinibble”.

jim = &FD0O0 define communications gap in memory

lowlatch = &FCFF define low latch to which midbyte will be written
?lowlatch = &XY specify midbyte

hilatch = &FCFE define high latch to which hinibble will be written.
?hillatch = &0Q specify hinibble

Jim?NM = &JK write value hex JK to address hex QXYNM.

Direct method, megabyte write, machine code.

LDA #&XY load accumlator with midbyte

STA &FCFF store it in lowlatch (on last byte in Fred)

LDA #&0Q load accumulator with hinibble

STA &FCFE store it in hilatch (on last but one byte of Fred)
LDA #JK load accumulator with data value

STA &FDNM store it in the NM byte of Jim

Example: write the value decimal 127 (hex 7F) to address hex 76C54 in the Beebex 1MB map
BASIC machine code

jim = &FD00 LDA #8&6C

lowlatch = &FCFF STA &FCFF

A% = 149 now write to Jim, to pass data byte from BBC to Beebex
X% = &NM define lowbyte in Jim, to correspond to lowbyte in Beebex
Y% = &JK specify value to be written

CALL OSBYTE execute OSBYTE function as defined

example: write the value 127 (hex 7F) in the Beebex memory location hex 6C54.
OSBYTE = &FFF4

A% = 147
X% = &FF

Y% = &6C
CALL OSBYTE
A% = 149

X% = &54

Y% = 127

CALL OSBYTE
OS call method, machine code

method example

LDA #147 LDA #147

LDX H&FF LDX #&FF

LDY H&XY LDY #4&6C

JSR &FFF4 JSR &FFF4

LDA #4149 LDA #149

LDX #&NM LDX #&54

LDY #&JK LDY H#&TF (or LDA #127)
JSR &FFF4 JSR &FFF4

READING FROM BEEBEX

The choice of techniques is much the same as for writing to Beebex, with the same speed
advantage of the "“direct method”, and with the same general principles for the OSBYTE call
method.

Direct method, BASIC

To read the value in address hex XYNM in Beebex, and make it available as BASIC variable varl.

jim = &FDO0 define communications gap in memory

lowlatch = &FCFF define position of lowlatch in Fred

?lowlatch = &XY define value of midbyte to be written in lowlatch
varl = jim?&NM put in variable varl the value of the byte at &XYNM in Beebex
example: print the value in Beebex memory location hex 6C54.

jim = &FD0O0

lowlatch = &FCFF

?lowlatch = &6C

varl = jim?8&54

PRINT varl

Read, direct method, machine code

method example

LDA #&XY LDA #&6C specify midbyte A

STA &FCFF STA &FCFF write it to paging register in Fred
LDA &FDNM LDA &FD54 read from specified byte in Jim

Value of specified byte is now in the accumulator of the cpu.
Read, OSBYTE method, BASIC

OSBYTE = &FFF4 define OSBYTE j i §
A% = 147 define the required function, ie write to Fred,
to set lowlatch to desired value
X% = &FF define last byte in Fred, ie paging register
Y% = &XY set value of midbyte to put in Beebex lowlatch
CALL OSBYTE execute, to set midbyte to hex XY
A% = 148 define OSBYTE function, ie read from Jim
X% = &NM define lowbyte in Jim, corresponding to lowbyte in Beebex

varl = USR(OSBYTE) execute read function

BEEBEX BEEBEX ENCLOSURES

For scientific and engineering purposes, the best way of providing suppoit, pcwer and enclosure
for Eurocards used as BBC extensionsisin a proper Eurorack, of which three versionsare offered.

All three Eurorack BEEBEX enclosures are complete with rack-mounting BEEBEX and cable,
power supply and *10 software. The power supply prevides +5V @ 6a, -5v @ (.5a, +12v @ 2.5a and
-12v @ 0.5a.

& slot Eurorack. This is smallest system, and provides power and support for BEEBEX and 7
Eurocards. Total dimensions are 242 w, 420 d (including 52mm of removable handies) and 145 h.

16 slot Eurorack. As 8 slct, but takes BEEBEX and 15 Eurccards. Dimensions are 460 w, 120 d, 145
h.

Eurcrack with 9 slots + disk mcdule. For the serious user, a particularly convenient laboratory set-
up consists of the BBC with a 19" rack which has BEEBEX to providi 8 Eurocard extensions slots,
with the BBC disk drive housed at the other end of the rack. This is driven from the BBC's internal
floppy disk controller as usual, but instead of a separate box for the drives, they are pecwered,
supported and enclosed in the same rack as the BEEBEX extensions.

BEEBEX is also compatible with Acorn Eurocards, although these are now largely obsolete and
unobtainable.

BEEBEX VERSIONS

BEEBEX is supplied in two principal versions. The economy type is complete and self contained,
and consists of a cable from the BBC 1MHz bus to the latch circuitry on the BEEBEX Eurocard
(160 x 100mm). The card has four on-board DIN 64 way sockets; into each of these a CUBE
Eurocard can be plugged.

The rack-mounting version is the same pcb but has no sockets, but 64 way DIN plug which is
inserted into the cpu socket of a standard CUBE backplane. Then up to 15 Eurocards can be
plugged into the backplane.

TYPICAL USES
ANALOG - HIGH SPEED, HIGH ACCURACY, HIGH VOLUME

Such an arrangement might be a 12 bit analog card (CUBAN-12) and a DRAM memory (CU-
DRAM). This could be used to read and store 43,690 twelve bit analog readings in 1.57 seconds -
clearly much faster than any other way of doing this job. This configuration will fit in the low cost
enclosure.

“SILICON DISK"

The BBC has 32KB of RAM, including system RAM, space for variables and screen RAM. If large
arrays are to be manipulated, the user must perform a tedious shuffling process to and from the
disk to provide enough work space. If high resolution graphics are used, the BBC RAM area is
reduced to 5886 bytes. In the small enclosure, the user can add 128KB of paged RAM, on the
economy version with no enclosure four CU-DRAMs can be added, which provide an extra 256 KB
of RAM, and in the 16 slot enclosure the BEEBEX itself takes one slot, allowing up to 15 CU-
DRAMs with a capacity of 983KB.

NON-VOLATILE BACK-UP

An alternative to the CU-DRAM as a memory extension is the CU-MEM, which has a battery back-
up circuitfor CMOS RAMs. CU-MEM has two independent banks of memory sockets which can be
fitted with RAM or EPROM. It the economical 2KB CMOS devices are used, CU-MEM can provide
up to 16KB of non-volatile memary. The 8KB devices, being new technology cost more per byte,
but allow CU-MEM to carry B4KE of battery backed RAM.

BEEBEX

REAL WORLD CONTROL

Both eight-bit and twelve-bit versions of the CUBE analog interfaces have multiplexed analog
input, analog output and digital ilities, all of which are useful for control purposes.
CUBIO offers 80 channels of digital i/o and eight optional timers, INDIO and the CUBE Delegate
Industrial Interface offer opto-isolated heavy-duty switching.

PROGRAM DEVELOPMENT

The CUBE Romulator is a development tools facilitating the design and testing of machine code
applications. It provides a ribbon cable with a 24 pin DIL plug on the end which is plugged in the
ROM socket of the target system. The 4KB of RAM on board the Romulator then behaves as if it
were the same 4KB of memory in a ROM in the target.

DISPLAY

CU-GRAPH is a VDU interface which provides a resolution of 512 x 256 pixelsin full colour, It uses
48KB of RAM to do this, using none of the RAM in the BBC.

RACKPRINT is a 24 column impact printer, printing upper and lower case at 1.3 lines a minute on
2" wide paper. '

VIEWLINE is part of the matching set with RACKPRINT, and a_mu_mmw upperand lower case on two
lines of 24 characters each.

REAL TIME CLOCK

CU-CLOCK is a battery backed card with a real-time calendar clock chip and provision for 2KB
CMOS RAM chip, which can also be battery-backed. A selectable watchdog circuit can check on
computer performance by generating a system RESET if the computer does not poll it tegularly
within a preset period.

*1/0 (“STAR 1 0")

THE CONTROL ROM s

Since the facilities of the hardware extensions connected to the BBC via BEEBEX do not exist on
the BBC's memory map, a means of communication is necessary. This is achieved by the built-in
facilities of the BBC, in the form of the two expansion unit ports, called“FRED" and “JIM".

Using Fred and Jim is not difficult to understand, but can be tedious, and a way to improve the
convenience of accessing the CUBE modules has been devised in the form of a sideway ROM
called *I/0. (prounced “star i 0"). The concept of *I/0 is that all inputs and outputs to external
devices can be treated in the same way as inputting data to and from a disk file. When called, *1/O
sets up the input/output vectors such that the device in questionis called rather than the disk unit,
but the BASIC facilities of BPUT and BGET (for outputting and inputting a byte to or from a disk
file) operate exactly as usual.

Within *1/0 are dedicated channels for calling the CUBE modules popularly used with BEEBEX.
These make the use of CUBE modules almost as easy as if the devices were within the BBC.

